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The application of Bayesian analysis to issues in developmental
research

Lawrence J. Walker, Paul Gustafson, and Jeremy A. Frimer
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This article reviews the concepts and methods of Bayesian statistical analysis, which can offer inno-
vative and powerful solutions to some challenging analytical problems that characterize develop-
mental research. In this article, we demonstrate the utility of Bayesian analysis, explain its unique
adeptness in some circumstances, address some concerns and misconceptions about the approach,
and illustrate some applications of Bayesian analysis to issues that frequently arise in developmental
research. The illustrations of the approach provided here reflect several important issues within the
domain of moral reasoning development (such as assessing patterns of stage change over time);
however, the methods are readily applicable across content areas in developmental research.
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The purpose of this article is (1) to introduce Bayesian statisti-
cal analysis to the field of developmental psychology, (2) to
demonstrate its utility, (3) to explain its unique adeptness in
some circumstances, (4) to address some concerns and
misconceptions about the approach, and (5) to illustrate some
applications of Bayesian analysis to issues that frequently arise
in developmental research. The Bayesian approach offers inno-
vative solutions to some challenging analytical problems that
plague research in developmental psychology. The illustrations
of the approach provided here are in the domain of moral
reasoning development, but the methods are applicable across
content areas in developmental research.

1. Introduction to Bayesian analysis

There are numerous books describing the Bayesian approach
to statistics (some accessible examples include Congdon,
2003; Gelman, Carlin, Stern, & Rubin, 2004; Gill, 2002). The
essence of Bayesian analysis, however, can be expressed
succinctly. An investigator wishes to learn about some
unknown parameters, which we denote as P. Typically, these
parameters are attributes of the population under study and,
particularly in the developmental context, they would include
descriptors of change over time. The investigator starts by
formulating a probability distribution over the possible values
of P. This prior distribution is taken to reflect the initial beliefs
about P. These could be the investigator’s personal beliefs or,
in some instances, the aim might be to formulate a prior distri-
bution representing a diversity of initial opinions among
involved parties. Here, there is a philosophical shift in using
probability theory to describe belief about fixed but unknown
quantities (the parameters) as opposed to physically random
processes such as the outcomes of coin tosses. In fact, there is

a rich literature on axiomatic development of so-called subjec-
tive probability (see Bernardo & Smith, 1994, for an overview).
Setting aside the philosophical underpinnings, however, the
basic notion is that the possible values of the parameters are
weighted in advance. For instance, say x and y represent two
possible and competing sets of values of the parameters P. If
P = x is considered twice as likely as P = y, in advance of
observing the forthcoming data, then the chosen prior distri-
bution should assign twice as much probability to x as it does
to y.

To be more explicit, the specification of a prior distribution
typically boils down to choosing a center (say the mode of the
prior distribution) and a spread (say the standard deviation).
The center can be regarded as an initial best guess at P and,
by varying the spread, the investigator can infuse less or more
background knowledge about P into the forthcoming analysis.
Indeed, less is often perceived as desirable in striving for scien-
tific objectivity, so that widely spread prior distributions are
relatively common in practice.

Next, the investigator collects data (D), thought to be linked
to Pvia a known conditional probability distribution or szaziszi-
cal model, for D given P. As a simple example, say D consists
of test scores for »n participants regarded as a random sample
from the population under study, with P being population
mean and standard deviation scores. Then, a supposition that
the scores are normally distributed across the population
would comprise a statistical model for D given P. This part of
the inferential process is inherent in all statistical methods, and
the science and art surrounding how to specify this model and
then check its appropriateness once data are observed cuts
across statistical paradigms.

Once the investigator has chosen the prior distribution and
statistical model he or she thinks are appropriate and once the
data are in hand, there is no ambiguity about how to carry
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The illustrations of some of the applications of Bayesian statistics
provided here are based on data originally reported by Walker,
Gustafson, and Hennig (2001).
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through the Bayesian analysis. Bayes theorem, which is a
simple application of the mathematical laws of conditional
probability, determines the conditional distribution of the
parameters P given the data D, referred to as the posterior distri-
burion. A mathematical statement of Bayes theorem is given in
the Appendix. The posterior distribution encapsulates all
knowledge about P after having seen D, and various inferen-
tial statements can be “read-off” from this distribution. For
instance, some measure of the center of this distribution (i.e.,
a mean, median, or mode) can be taken as the single best guess
for the value of P (i.e., a point estimate). Similarly, a summary
of the posterior distribution’s variability (such as the standard
deviation of this distribution) reflects the accuracy of the
estimate, while percentiles of this distribution can be used to
form interval estimates. For instance, the 2.5th and 97.5th
percentiles can be regarded as a 95% credible interval for P,
which serves as an alternative to 95% confidence intervals
arising from standard non-Bayesian (frequentist) statistical tech-
niques.

Whereas Bayesian analysis is relatively simple conceptually,
there are many issues, both practical and philosophical,
surrounding whether and when this approach to statistical
inference is preferable to the more established frequentist
approach. We take up some of these issues in section 2, but
first we give a simple example of Bayesian analysis applied to
developmental data in order to illustrate the basic concepts.

Consider the study of moral reasoning development
described by Walker, Gustafson, and Hennig (2001). In this
longitudinal study, 64 children and adolescents participated in
five annual administrations of Kohlberg’s Moral Judgment
Interview (MJI; Colby & Kohlberg, 1987). These individual
interviews were recorded, transcribed, and then scored for
stage of moral reasoning development. Later we consider a
more detailed analysis of stage-to-stage transitions on the five
moral stages but, as a simple initial illustration, we consider the
composite weighted average score (Colby & Kohlberg, 1987) to
indicate level of moral reasoning development. This score is
given by the sum of the products of the percent usage at each
stage multiplied by the stage number (and thus has a range of
100-500). So, each participant has a series of five numerical
scores, one at each of the five time-points, with each score
being on a scale from 100 to 500.

So, to illustrate Bayesian analysis with a straightforward
example from this study, consider making inferences about the
average score on the baseline interview in this population (i.e.,
What is the typical level of moral reasoning for children in this
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Figure 1.

age range?). Although this may not be of great interest devel-
opmentally, because there is no consideration (yet) of change
across time, it does serve to provide some intuition concern-
ing Bayesian analysis. Say we start with a wide prior distri-
bution for this quantity, namely a normal distribution centered
at 300 (i.e., equivalent to moral Stage 3) with a SD = 75. This
distribution is represented as the black curve in the left-hand
panel of Figure 1. Now say we obtain some data, in the form
of baseline scores for five (randomly chosen) participants.
These data are combined with the prior distribution to give the
posterior distribution of the underlying mean, portrayed as the
least-peaked of the gray curves in the figure. Upon adding
more data, the posterior distribution becomes more concen-
trated, reflecting increased knowledge about the population
quantity. The successively more peaked curves in the figure
represent the posterior distributions based on data from 10,
15, and 20 participants in total.

Thus, after 20 participants have been considered, the poste-
rior distribution is centered at 265 points, with 95% of the
posterior probability concentrated within 8 points of the
center. These are Bayesian point and interval estimates for the
population quantity of interest. Numerically, they are almost
identical to the usual frequentist estimates (sample mean as the
point estimate; sample mean * 1.96 standard errors as the 95%
interval estimate). Of course, the statistics of the two methods
reflect slightly different phenomena. The Bayesian inferences
are framed in terms of probabilistic expression of belief about
unknown quantities, so that one can ascribe 95% probability
to the interval 265 * 8 containing the quantity of interest.
Conversely, the frequentist inferences are framed in terms of
hypothetical repetitions of the experiment, with 265 * 8 being
the result from the one real repetition, and 95% of the hypo-
thetical repetitions producing a correct interval. Notwithstand-
ing the differing interpretation, this sort of numerical
agreement between frequentist and Bayesian inferences is not
uncommon in simple statistical settings.

The right-hand panel in Figure 1 describes the accumulation
of Bayesian evidence for the same sequence of data (i.e., the
same sequence of 20 participants), but starting with a dramat-
ically different prior distribution. In particular, consider an
investigator who started with a prior distribution centered at
400 (i.e., equivalent to moral Stage 4) with a SD = 25. With
the hindsight of observed data, this investigator’s prior convic-
tions turned out to be very poor, as evidenced by a sequence
of posterior distributions which march to the left as the data
accumulate, and end up being rather similar to those in the
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Bayesian inference on the population-average baseline score. In each panel the black curve gives the prior distribution, while the

four successively more peaked curves give the posterior distribution after observing data from 5, 10, 15, and 20 participants.
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left-hand panel once 20 data-points are in hand. That is,
whereas the “bad” prior distribution had some impact on the
posterior distribution based on data from 5 participants, this
impact is essentially dissipated once we have data from 20
participants. Again this is a common phenomenon, at least in
simple settings. Relatively modest amounts of data will
“trump” prior beliefs. More precisely, mathematical theorems
guarantee that the prior distribution will be “forgotten” as the
sample size increases.

We return to the composite scores in section 3, where we
carry out a Bayesian analysis of change over time; but first we
make some general remarks about the advantages and diffi-
culties of Bayesian analysis.

2. General features of Bayesian analysis

In this section, we discuss several aspects of Bayesian analysis,
including that it: (1) is a general, comprehensive, and unified
approach; (2) is precise; (3) is more interpretable than frequen-
tist approaches; (4) can now be conducted with computational
ease; (5) can account for multiple uncertainties; (6) is natural
with hierarchical models and those involving unobserved latent
structure; and (7) entails the ability to evaluate prior infor-
mation.

Perhaps the nicest feature of the Bayesian approach is that
it provides a general and complete strategy for the analysis of
data. After specifying a model for how the data arise given the
parameters and a prior distribution for the parameters, there
is no ambiguity about the form of statistical inferences. In
contrast, the frequentist statistical toolbox, as represented say
by the content of standard statistical software packages, is
comparatively scattered (e.g., regression versus analysis-of-
variance approaches). There is a tendency for certain methods
and certain estimation techniques to be advocated in certain
kinds of problems based mostly on historical precedent. For
instance, “structural equation modeling” is a widespread tech-
nique in some quantitative disciplines (e.g., psychometrics),
but uncommon in others (e.g., biostatistics).

Generally speaking, the two “complete” theories for statisti-
cal inference, in the sense of providing comprehensive recipes
for getting point and interval estimates of target quantities, are
Bayesian theory and maximume-likelihood theory. However,
various pressures have led to more fracturing in the likelihood
camp, so that the literature abounds with mention of methods
such as quasi-likelihood, pseudo-likelihood, restricted likeli-
hood, penalized likelihood, and so on. Meanwhile, the
Bayesian approach, with its simple and elegant foundation in
the laws of conditional probability, remains unified.

In addition to being unified, there are underlying mathemat-
ical reasons why Bayesian inferences are especially “good” in
terms of being as precise as possible. In particular, Bayesian
estimators emerge as optimal inferential procedures under
standard decision-theory arguments (for instance, see Berger,
1985). Roughly put, there is a mathematical guarantee that a
Bayesian estimate of a parameter has the smallest possible
mean-squared-error (in an aggregate sense across all possible
values of the parameter, where this aggregation is weighted
according to the prior distribution). Admittedly this is a rather
technical sense in which Bayesian answers are the best possible
but, in fact, it has clear implications. In particular, a Bayesian
estimate can never be “clearly beaten” by a non-Bayesian
estimate, where “clearly beaten” means having a larger mean-

squared error for every possible set of values for the true
parameters.

Bayesian inferences are arguably more interpretable than
frequentist inferences. As mentioned earlier, in the simple
example of section 1, we can say that, with 95% probability,
the parameter of interest lies in the interval of 265 * 8 points.
This probability statement describes degree of belief (i.e., the
investigator would view a bet involving 19:1 odds that the
parameter is in this interval as “fair”). In contrast, the analo-
gous interpretation of a frequentist confidence interval is
rather more convoluted: If we repeat the experiment over and
over again, then 95% of these repetitions give an interval
containing the parameter of interest.

The differences between the approaches are even more
extreme when comparing two or more statistical models in
light of data, often referred to as hypothesis testing. The Bayesian
approach extends the concept of a posterior distribution over
parameters to that of a posterior distribution over hypotheses
and parameters jointly. Thus, one can end up with a claim such
as: Given the data, there is only a 3% probability that a simple
model (a “null” hypothesis) is true versus a 97% probability
that a more complex encompassing model is true (an “alterna-
tive” hypothesis). In contrast, if a frequentist hypothesis test of
null versus the alternative produces a p-value of .03, then the
interpretation is again convoluted: Given that the null hypoth-
esis is true, there is only a 3% chance of observing data as or
more extreme than those actually observed. Thus, it is not
surprising that significance testing of this sort has engendered
considerable angst within psychology in recent years (Harlow,
Mulaik, & Steiger, 1997). Whereas one response to critiques
of significance testing is to shift focus from significance testing
to estimation of effect sizes instead, another response is to
adopt Bayesian methods for hypothesis testing.

The unintuitive nature of p-values and classical hypothesis
testing, more generally, are notorious for causing students and
researchers grief, in part because of the erroneous tendency to
interpret the p-value as a probability of the null hypothesis
being true. Bayesian analysis gives investigators what they
want! Although we do not pursue Bayesian hypothesis testing
further in this article, it is worth mentioning in passing that
this is not one of the simple settings where numerical agree-
ment between Bayesian and frequentist answers is common. In
particular, the Bayesian probability that a null hypothesis is
true is often substantially larger than the corresponding
frequentist p-value. This may initially sound negative, in the
sense of Bayesian methods being less sensitive to detect real
“effects.” However, the ease with which frequentist tests reject
null hypotheses has been implicated as a driving factor behind
misleading claims, which are initially “proved,” but then subse-
quently discredited. In particular, using .05 significance-level
testing as the threshold for publishing a “research finding” has
been demonstrated to produce a literature in which far more
than 5% of published findings are, in fact, false (see Ioanni-
dis, 2005, for a recent and accessible discussion of this point).

If the Bayesian approach is principled and interpretable,
then why is it not ubiquitous? Until about 1990, computational
limitations were the Achilles’ heel of Bayesian inference. The
posterior distribution could be written in abstract mathemati-
cal form, but could only readily be computed in cases of very
simple statistical models and prior distributions. The compu-
tation involves the evaluation of integrals which, in general, is
a hard numerical problem that suffers from a curse of dimen-
stonality — the computational burden grows exponentially with
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the number of parameters involved. For this reason, the
Bayesian approach was viewed as something of a curiosity with
the reservation that, regardless of its merits, it could not be
implemented across a wide range of problems. The break-
through came with the development of new algorithms or,
more accurately, the adaptation of old algorithms from the
statistical physics community, which could break the curse.
Roughly put, these algorithms do not quite compute the inte-
grals involved, but they do enough to generate random samples
from the posterior distribution which, in turn, is sufficient to
give a picture of the posterior distribution. These computer-
generated samples can be made arbitrarily large, so that
Bayesian estimates can be computed as precisely as desired.
These algorithms, usually referred to collectively as Markov
chain Monte Carlo (MCMCQC) algorithms, have continued to
be a fulcrum of intense statistical research activity ever since
the seminal article of Gelfand and Smith (1990).

Notwithstanding the advent of MCMC algorithms, in some
quarters computation is still viewed as a weak link in the
Bayesian firmament. It is true that, in relatively simple statisti-
cal models, implementing and tweaking MCMC-based
answers requires more effort than for most frequentist
analyses. However, MCMC algorithms are particularly adept
at handling models involving unobserved or latent structure.
The hierarchical models considered in the next section consti-
tute an example of this. Also, there have been efforts to
“package” MCMUC algorithms in a user-friendly manner. Most
notably, the WinBUGS software (Spiegelhalter, Thomas, Best,
& Lunn, 2003) takes a user’s prior and model distributions and
produces a posterior distribution, while the user is shielded
from details of the MCMC computations used behind the
scene. This Windows-based software has a graphical interface
to facilitate the process of inputting model and prior distri-
butions. One testament to its success is that the traffic on the
WinBUGS e-mail discussion list (bugs@jiscmail.ac.uk) is
generated by a healthy mix of statisticians and subject-area
researchers; that is, the latter group is now interested and
willing to go the Bayesian route.

There are various other advantages claimed for the Bayesian
approach in particular circumstances. In many situations,
Bayesian inferences can be regarded as “more honest” in the
manner that they simultaneously account for multiple uncer-
tainties. Other methods often estimate parameters for one part
of the model and then feed these in as known true values in
another part of the model, resulting in overly confident infer-
ences at the end of the day (i.e., confidence intervals which are
unjustifiably narrow). This issue arises commonly in random-
effect models. A frequentist confidence interval for an individ-
ual (participant-specific) random effect is based on the
pretense that the random-effect variance is known when, in
fact, it is only estimated.

Also, Bayesian modeling and computation are very natural
in models with “unobserved latent structure,” as is often postu-
lated in psychometrics contexts, for instance. Here a joint
posterior distribution (or density) over latent (unobserved)
variables and parameters arises, which is readily computed via
MCMC algorithms. In contrast, non-Bayesian approaches
require evaluation of the likelihood function for observed vari-
ables given parameters. Technically, this involves mathematical
integration of the joint density function over the latent vari-
ables, which is not always readily implemented in software.
This advantage of the Bayesian approach extends to dealing
with missing data, as conceptually the missing values are just

further unobserved or latent variables whose uncertainty is
described by the joint posterior distribution.

Another very natural use of the Bayesian approach arises
when data and parameters are organized in a “hierarchical”
manner, with an archetype being data from student examina-
tions, whereby students are nested within classes, which are
nested within schools, which are nested within school districts,
and so on. In fact, we give examples of the Bayesian approach
to hierarchical models in the next section.

The most contentious part of the Bayesian statistical
paradigm is undoubtedly the formulation of prior distri-
butions. Some argue this to be a great strength — they hold that
virtually any scientific investigation is carried out against a
backdrop of considerable previous work and related knowl-
edge, and that this should be acknowledged explicitly when
drawing inferences. Others see it as neutral — they are not
generally keen on trying to encapsulate prior knowledge in a
very precise way, but are pleased to reap the other benefits of
Bayesian analysis. Such investigators tend to use widely spread
prior distributions, with the aim of “letting the data speak for
themselves.” Others are critical — they argue that subjective
assessments have no place in science. The standard Bayesian
retort is that frequentist statistical methods have their own
subjectivities if you merely scratch the surface. In addition,
Bayesian inference is often used in a way that acknowledges
and accommodates this concern by formulating a few differ-
ent prior distributions, and then reporting inferences arising
from each. If these inferences are, in the end, very similar, then
there is confidence that the conclusions hold across a wide
range of prior beliefs. If not, at least the important role of prior
information in the given problem has been clearly identified.
The ability to identify, acknowledge, and evaluate potential
biases is a particular strength of the Bayesian approach.

3. Hierarchical Bayesian models

As alluded to in section 1, in simple settings, Bayesian and
frequentist inferences often agree closely in numerical terms,
despite having different conceptual interpretations. With more
complex data structures, however, such agreement is not a
foregone conclusion. A common example of this is when the
data have hierarchical structure. For instance, in the Walker et
al. (2001) moral reasoning study, individual item responses
are nested within time-points, which are nested within
participants.

Again consider Walker et al.’s composite weighted average
scores for each participant, but now including all five time-
points, rather than just the initial one as in the earlier example.
Later we consider these data at the finer level of proportion of
moral reasoning at each stage. The raw scores (for the 64
participants with data at all five time-points) are plotted in the
top of Figure 2 (gray lines), with the average score at each
time-point superimposed (black line). The “jaggedness” in the
scores across time is probably attributable to measurement
error in the interview scheme, rather than real short-term
oscillations in moral reasoning development.

In order to account for measurement error, we postulate that
the observed data for each participant arises from an underly-
ing linear (developmental) change, superimposed with random
noise. That is, every participant has an underlying or true score
which varies linearly over time. Moreover, the magnitude of
the random noise is assumed to be inversely proportional to
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Figure 2. Composite scores over time. The top panel gives the raw
scores over time for all 64 participants with complete data. The middle
panel gives the result of fitting separate weighted regressions for each
participant. Only the fitted lines for every third participant are
displayed, to make the plot less crowded. The solid line is the result of
a pooled analysis. The bottom panel gives the results of fitting a hier-
archical Bayesian model. Here the solid line is the estimated relation-
ship for an average participant.

the number of scoreable items at that time-point (which in this
data-set ranges from 3 to 13). In statistical terms, this corre-
sponds to a weighted linear regression model for each partici-
pant, that is, regressing score on time. We fit this model to each
participant’s data separately. That is, we conduct a Bayesian
analysis for each participant separately, which roughly can be

regarded as achieving the lower part of the hierarchical
analysis. The estimated linear relationships for every third
participant appear in the middle panel of Figure 2 (including
results for all 64 participants makes the plot too crowded). We
see there considerable variation in the intercepts of these lines
(which represent baseline scores), and some variation in the
slopes of these lines (which represent rates of development
over time). We now have 64 separate posterior distributions in
hand and, thus, can ask if they are somehow related.

At the other extreme from fitting a separate model for each
participant (which suggests differing and independent rates of
development for each participant), one can postulate that a
single linear relationship governs all participants and that all
the variation in the data is the result of random noise devia-
tions from this single line. The estimated relationship from this
“pooled” analysis is superimposed on the middle panel of
Figure 2. Given the variation in the estimated time-score
relationships from the 64 separate regression fits, the appropri-
ateness of the pooled analysis seems dubious. Or, more to the
point, it seems implausible that all participants have the same
underlying score at baseline and the same underlying rate of
development over time. By contrast (and key here), one
expects some commonality in participants’ rates of develop-
ment, and this is not reflected in fitting a separate model for
each participant. One wonders if something intermediary
between separate analyses and pooled analysis might be appro-
priate. An intermediary approach can be achieved via a “mixed
model” involving random effects. Although there are
approaches to mixed models without an explicitly Bayesian
slant, arguably these are simply approximations to hierarchical
Bayesian models.

The hierarchical Bayes approach to problems like this does
indeed achieve this compromise between separate and pooled
analysis. The form of the crucial prior information is that
participant-specific parameters (intercepts and slopes in our
case) have a certain distribution across the population from
which participants are drawn. As this distribution narrows, we
get closer to the pooled analysis case; that is, the variation in
the participant-specific parameters diminishes. Conversely, a
wide distribution leads toward separate analyses without
commonality across participants. The nice feature here is that
the investigator need not try to judge the width of this distri-
bution in advance. Rather, this width, which initially is viewed
as characterizing a prior distribution, is itself assigned a prior
distribution (one interpretation is that of hierarchically placing
prior distributions upon prior distributions). Thus, the data
themselves will answer the question of whether or not there is
a relationship by suggesting an appropriate width. Conse-
quently, we can take advantage of the amorphous prior asser-
tion that there is some level of commonality in the
participant-specific parameters. The approach is described as
“hierarchical” in that it involves a model for observable data
given participant-specific parameters, followed by a distri-
bution for the participant-specific parameters given common
parameters, followed by a (prior) distribution for the common
parameters. The model fitting, however, is done simul-
taneously, rather than in sequential stages.

It should be mentioned that the use of participant-specific
parameters is useful for representing a specific kind of hetero-
geneity in a population. Another kind of heterogeneity arises
from mixture models, where participants belong to one of
several clusters, with common parameter values within a
cluster and no overt information about which participants
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belong in which clusters. Many nice features of Bayesian
analysis do carry over to mixture model settings; see Marin,
Mengersen, and Robert (2005) for a review.

The Appendix gives some further technical details concern-
ing the specification and fitting of this hierarchical model to
the present data. We focus on the results of this analysis, as
given by the estimated linear relationships (for every third
participant, as before), in the bottom panel of Figure 2. The
impression from the plot is that the variation in underlying
baseline scores is about the same as with separate analyses. The
variation in the slopes, however, is less than we see from
separate analyses. That is, in aggregate, the lines are closer to
parallel now. Overall, then, Bayesian analysis indicates that
there should be almost no pooling of the baseline score esti-
mates, but that there should be some degree of pooling for the
slope estimates. For instance, the 64 slope estimates from the
separate analyses have a SD = 14.2 (with a range of —9.7 to
54.4), whereas the corresponding estimates from the hier-
archical Bayesian analysis have a SD = 11.4 (with a range of
only —0.3 to 40.5). There are strong conceptual and theoreti-
cal statistical arguments to suggest that, relative to separate
analyses, the hierarchical Bayesian analysis gives a better
assessment of how much participant-to-participant variation
exists in the rate of development over time.

The hierarchical Bayesian approach can be adapted to a
more sophisticated modeling of participants’ distribution of
moral reasoning across stages on Kohlberg’s MJI scale. Of
course, the hard-stage model that Kohlberg (1984) posited
makes the primary claim not of average change in composite
moral reasoning scores across individuals, but rather of invari-
ant order in the acquisition of the five moral stages that make
up the sequence; that is, that individual development should
be irreversibly forward, one modal stage at a time, with no
regressions and no stage-skipping (for a fuller explication of
Kohlberg’s model, see Lapsley, 2006, and Walker, 1988,
1996). Longitudinal data regarding this claim have been
impervious to statistical test because of the difficulty in distin-
guishing real change from random fluctuations and measure-
ment error. Bayesian analysis handles this problem with
relative ease.

The basic premise of the hierarchical Bayesian approach to
this problem is that, at each time-point, each participant has
an underlying distribution of moral reasoning; that is, a certain
percentage at Stage 1, a certain percentage at Stage 2, etc.
Then the MJI scoring is regarded as a “noisy” reflection of this,
via a simple statistical model. For instance, if the underlying
distribution across the five moral stages (in percentage terms)
is (5, 10, 50, 25, 10), then each scoreable item is regarded as
having these percentage chances of being scored at these
stages. Technically, then, the scores can be regarded as multi-
nomial data, given the underlying percentages or probabilities.
Thus, for a given participant and time-point, we distinguish
between the observed data (stage scores in the form of
frequencies) and the unknown parameter (true distribution of
reasoning over stages, expressed in percentage terms).

It should be noted that our framework for this problem is
quite different from a latent variable framework. For instance,
a latent transition analysis (LTA) might be envisioned for these
data (for a review of LTA, see Lanza, Flaherty, & Collins,
2003). LTA would assume that each participant at each time-
point belongs to a single true (but unobservable) stage, and the
percentage chances for scoring an item are a function of this
stage (but the same for participants at the same stage). Thus,

whereas LTA uses a mixture-model approach to capture
heterogeneity, the approach we describe uses random effects.
Both non-Bayesian and Bayesian approaches might be used to
fit LTA models and, in fact, Lanza, Collins, Schafer, and
Flaherty (2005) describe the use of Bayesian computational
techniques to facilitate standard error calculations in LTA.

Now we use the hierarchical Bayesian idea to postulate
structure in how the moral reasoning distribution changes over
time. In this instance, we compromise in the extent to which
data are pooled across time. At one extreme there is no
pooling, so that temporal change in the distribution can be
arbitrarily “jagged.” At the other extreme, the change is struc-
tured and smooth (in a manner which is elaborated upon in
the Appendix). As in the previous application of hierarchical
modeling, we do not fix the nature of the compromise in
advance. Rather, the relevant parameters are assigned a prior
distribution, to let the data speak about appropriate values and
commensurately appropriate points on the smooth—jagged
spectrum.

One simple application of the Bayesian model is to study the
change in modal stage across time. The primary claim of
Kohlberg’s structural-developmental model is that individual
development is irreversibly forward, one modal moral stage at
a time. If we examine the raw-data estimates of modal stage,
we find that there are no instances of stage-skipping from one
time-point to the next for any participant. And further, consist-
ent with Kohlberg’s model, the estimated modal-stage never
declines across time for 57 of the 64 participants (32 of these
have estimated modal stages with no variation over time, while
the other 25 exhibit at least one increase to the next stage).
However, there are seven participants exhibiting a decline in
modal stage at some time-point, and the natural question is
whether these are real regressions in the underlying moral
reasoning or simply artifacts of the assumed (multinomial)
noise in the data.

For each participant, our model yields the posterior proba-
bility of a nondecreasing modal-stage sequence given the data.
These come directly from the MCMC-based model-fitting
procedure (with further details given in the Appendix and with
the code available for download at www.stat.ubc.ca/~gustaf’).
They range from 22 to 99%, with 61 of 64 participants having
probabilities >50% (confirming the Kohlbergian hypothesis).
Among these, 39 participants have individual probabilities
exceeding 80%. Consider, for instance, the 53rd participant,
one of the seven with raw estimates suggesting a decrease in
moral stage (from modal Stage 3 at t; to Stage 2 at t,, and then
remaining at that stage until progressing back to Stage 3 at ts).
This participant’s raw data (expressed as the distribution of
reasoning across stages at each time-point) are displayed in the
upper panel of Figure 3. The lower panel of the figure gives
Bayesian estimates of the participant’s moral reasoning
development over time. The analysis suggests a lot more
smoothness in the underlying moral development than is
evident in the raw data and, in fact, the Bayesian estimates
display a constant modal stage over time (viz., at Stage 2).

The figure conveys only the “best guess” at the underlying
moral stage sequence, but the model itself is capturing how
much uncertainty to attach to this guess. In fact, for this
participant, the posterior distribution ascribes 52% probabil-
ity to the sequence being nondecreasing, and 48% to the
sequence having at least one decline. That is, the data are
equivocal on the sequentiality question for this participant;
but more particularly, the decline seen in the raw-data modal
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Raw data (top row) and Bayesian estimates (bottom row) for the distribution of reasoning across stages, for the 53rd participant.

The five panels per row correspond to the five time-points. The numbers of scoreable items for this participant across time-points are (7,7,6,7,7).

estimates cannot be regarded as evidence of a real regression
in moral stage in this case.

Providing posterior probabilities on hypotheses about the
moral stage sequence are just one example of how Bayesian
inferences can be used to characterize evidence about develop-
mental patterns in a nuanced way, rather than simply checking
whether or not raw data sequences match the hypothesized
pattern in question. In fact, Walker et al. (2001) use the same
idea to evaluate more complex hypotheses about cyclical
patterns of consolidation and transition phases in stage
progressions.

4. The utility of Bayesian methods for
developmental research

There does seem to be undeveloped potential for Bayesian
methods to be useful in developmental research. As exempli-
fied in section 3, Bayesian techniques are well-suited to the
sharing of information across participants and/or across time.
The use of Bayesian methods to infer change over time has
been well-explored in health research and other settings (see,
for instance, Congdon, 2003), with the infusion of realistic
prior information about the magnitude and smoothness of
such changes being a central theme. Developmental
researchers should consider what such techniques can bring to
bear on their research programs.

A particular advantage of Bayesian analysis manifested in
the second example of section 3, and also in the Walker et al.
(2001) study, involves the assessment of how consistent an
empirical sequence of data over time is with a postulated
developmental pattern. A raw-data sequence is either consist-
ent or not, but this ignores the measurement error inherent in
empirical data. With frequentist statistical methods one can

obtain point estimates and confidence intervals for the
parameters underlying the raw data. But again, the point esti-
mates will either be consistent or inconsistent with the postu-
lated pattern, and it is not obvious how to account for the
uncertainty represented by the confidence intervals. On the
Bayesian side, however, one has a posterior distribution over
the parameters, which directly implies a posterior probability
that the parameters are consistent with the pattern.

Although only mentioned tangentially in this article, another
potential advantage of Bayesian methods in developmental
contexts involves the comparison of competing hypotheses.
For instance, Walker et al. (2001) quantified the evidence in
favor of a particular hypothesis about temporal patterns in
stage progressions against a vague hypothesis of arbitrary
change over time. That is, Bayesian methods treat null and
alternative hypotheses in a symmetric fashion, whereas
frequentist methods reflect only the strength of evidence
against a null hypothesis. The limitations of classical hypothe-
sis testing in psychological science contexts has been the
subject of considerable commentary (Trafimow, 2003).
Because empirical support for specific theories about patterns
of development is crucial to the discipline, Bayesian methods
deserve consideration.

Another issue which we have side-stepped is that of missing
data. For simplicity our example analyses are based only on the
64 participants in the Walker et al. (2001) study who
completed all five interviews. A further five participants
completed only some of the interviews. As mentioned earlier,
though, with some extra effort data from these participants
could be added, by treating the missing values as latent
variables “inside” the posterior distribution. A nice feature of
such an approach is that the posterior distribution then
naturally propagates uncertainty about the missing data values
to uncertainty about the parameters of interest. Ibrahim,
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Chen, Lipsitz, and Herring (2005) review Bayesian approaches
to missing data. This is clearly an important topic in develop-
mental studies, given the need to obtain longitudinal data with
the attendant problems of participant attrition.

On the technical side, it might be argued that Bayesian
analysis is more demanding of its users, though advances in
algorithms and software have, and will likely continue to
improve this situation. In 1975, a prominent statistician
famously predicted that while the twentieth century (at least to
that point) belonged to frequentist methods, the twenty-first
century would be “Bayesian” (Lindley, 1975). While the data
are not all in yet, this prediction may turn out to be close to
the mark.
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Appendix

Bayes theorem gives the distribution over a parameter P given data D
=d as
Pr(D=d|P=p)xPr(P=
Pr(P=p|D=d)= o D=4IP=P) il PZ ,
> Pr(D=d|P=p")Pr(P=p")
S

with summation replaced by integration when the set of possible
parameter values is continuous rather than discrete.

In the first hierarchical model example of section 3, let Y;, denote
the composite score of participant ¢ at time-point 7, based on #;, score-
able items. At the lowest level of the hierarchical model, Y;, is modeled
as arising from a normal distribution with mean o; + B; X ¢ and
variance n;'62. At the next level, the participant-specific parameters o;
and P, are modeled as independent and identically distributed realiza-
tions from respective normal distributions, having means o* and B*,
and variances Gé and (5[25. At the third and final level, these two mean
parameters and all three variances (62, 62, and Gﬁ) are assigned very
spread-out prior distributions, namely a normal distribution with
mean 0 and variance 10 000 for each mean parameter, and an inverse-
gamma distribution with parameters (.001, .001) for each variance
parameter. A standard MCMC algorithm, the Gibbs sampler, is used
to fit the model.

In the second hierarchical model, the stage scores for each partici-
pant at each time-point are regarded as multinomially distributed data;
that is, for each of the 7, scoreable items, there is a probability p;; of
the item being scored at stage j. The multinomial-logit transformation
is used, so that

b= exp(n)
! ZizleXp(nitk)

with say stage 1 taken as the reference category, so that m;; = 0 is
assumed. Then a multivariate normal prior distribution can be
assigned to the m;; in a way which smoother temporal trends are more
likely a priori. Particularly, for each 7and eachj =2, ..., 5, My - -

5

M;5) is assigned a multivariate normal prior distribution with mean
vector comprised of Os, while the variance matrix is ‘ch, with the
matrix V' chosen to give more weight to linear (rather than rough)
change over time. Each participant-specific variance parameter 11.2
governs the overall magnitude of change over time. These parameters
are assigned widely spread inverse-gamma prior distributions, as in the
previous example. Again, standard MCMC algorithms are used to fit
the model.
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